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Abstract. We give a theoretical explanation for the phenomenon of the magnetic susceptibility
showing a maximum at low temperatureTm for those compounds that show itinerant-electron
metamagnetism. We also derive the linear relation between the metamagnetic transition field
Hm andTm observed experimentally for Y(Co1−xAlx)2, paying particular attention to the effects
of the zero-point quantum spin fluctuations and assuming the existence of almost energetically
degenerate paramagnetic thermodynamic states.

1. Introduction

In spite of the long history of research in the field of itinerant-electron metamagnetism,
there still remain important problems unresolved, a typical example of which is that of the
occurrence of the susceptibility maximum observed at low temperature in the temperature
dependence of the magnetic susceptibility (for TiBe2 see Ackeret al (1981, 1984), Gerhardt
et al (1983); for YCo2 see Yoshimuraet al (1988a), Sakakibaraet al (1990), for instance).
The phenomenon has long been treated theoretically in terms of the Stoner–Wohlfarth
theory based on the single-particle Hartree–Fock approximation (Wohlfarth and Rhodes
1962, Shimizu 1981, 1982). The idea, however, seems to contradict our current belief
that the magnetic properties should be explained in terms of the collective low-lying spin-
fluctuation excitations rather than single-particle excitations. In fact, a lot of observed
magnetic properties of weak itinerant-electron ferromagnets and antiferromagnets are well
described on the basis of the self-consistently renormalized (SCR) spin-fluctuation theory
(Moriya 1985, Lonzarich and Taillefer 1985) at finite temperature. The ground state is not
an exception. In our previous paper (Takahashi and Sakai 1995), we therefore proposed a
new idea for describing the itinerant-electron metamagnetism in the ground state, paying
particular attention to the role of the quantum zero-point spin fluctuations present even in the
ground state. The purpose of this paper is to extend our previous study to finite temperature
and to propose a mechanism giving rise to the susceptibility maximum as mentioned above.

The simplest idea based on the single-particle picture is that of assuming that the free
energyF(M) as a function of the uniform magnetizationM can be expanded in the following
form:

F(M) = F(0)+ a
2
M2+ b

4
M4+ c

6
M6+ · · · . (1)

The coefficients are assumed to be obtained from the form of the density-of-states curve
around the Fermi energy in the case whereM = 0. If the fourth-order coefficientb
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becomes negative, the free energy will have a double-minimum structure, leading to a first-
order metamagnetic transition in the presence of an external magnetic fieldH . The band-
structure calculations show the existence of energetically almost degenerate non-magnetic
and magnetic local minima (Schwarz and Mohn 1984, Hathaway and Cullen 1991), which
are regarded as supporting the above picture. However, one has to assume adequate and
sometimes artificial forms of the density-of-states curves in order to reproduce experimental
results. Even in the SCR spin-fluctuation theory, such an expansion is assumed for the
ground state and finite-temperature properties are discussed taking into account the effects
of thermal spin fluctuations (Moriya 1986, Yamada 1993).

According to the above picture, it seems to be very difficult to interpret the magnetization
process observed for the Y(Co1−xAl x)2 system; i.e. the magnetization process for these
compounds shows good linearity if plotted in the form of an Arrott plot (anM2 versus
H/M plot) after the metamagnetic transition. Because of the presence of the sixth-order
term in (1), good linearity of the plot will not be expected from the above picture. On
the other hand, our idea (Takahashi and Sakai 1995) was to assume the presence of two
almost energetically degenerate exchange-enhanced thermodynamic states with different
spin-fluctuation spectra. We then interpreted the metamagnetism as the transition from one
exchange-enhanced paramagnetic state to another state, possibly magnetic, in the presence
of an external magnetic field. The idea was motivated by the belief that the magnetic
properties of the system have to be determined from the response of the spin-fluctuation
excitation to the perturbation applied externally to the system. We have also emphasized the
significant roles of the zero-point quantum spin fluctuations (Takahashi 1986, 1990, 1992,
1994, 1997) in dealing with the magnetization, which have been confirmed experimentally
(Yoshimuraet al 1988a, b, Shimizuet al 1990, Nakabayashiet al 1992).

Before proceeding to the next section, we again summarize the observed properties
of itinerant-electron metamagnetism for later comparison between theory and experiment.
Explaning these properties is the subject of our present study.

(i) The metamagnetism occurs around the critical region where the magnetism occurs or
disappears when the external parameters, such as the volume of the system and the alloying
concentration, are varied.

(ii) The transition is first order.
(iii) Accompanied by the metamagnetic transition, its magnetic susceptibilityχ shows

a maximum at around the temperatureTm with increasing temperature. The maximum
structure ofχ disappears in the presence of an external magnetic field higher thanHm,
i.e. forH > Hm.

(iv) The temperatureTm is well correlated with the metamagnetic transition fieldHm;
for instanceHm ∝ Tm for Y(Co1−xAl x)2 in the ground state (Sakakibaraet al 1990).

(v) The temperature dependence of the metamagnetic transition field is given by

Hm = Hm0+ ξT 2 (2)

at low temperature (Gotoet al 1994).

The plan of the paper is as follows. On the basis of simple thermodynamic arguments,
in the next section, we derive various behaviours occurring in relation to the metamagnetism
as mentioned above. We make a brief comparison between the theory and the experiments
on the Y(Co1−xAl x)2 system in the following section. The final section is devoted to
discussion.
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2. Simple thermodynamic arguments

Following Takahashi and Sakai (1995), let us assume the presence of almost degenerate
thermodynamic states whose free energies are denoted byF1(M, T ) and F2(M, T ), by
taking into account their explicit temperature dependence. We assume that both of these
states are paramagnetic, though one of the states, described byF2(M, T ), is almost magnetic
in the sense that it would become ferromagnetic classically if there were no spin-fluctuation
effects. The state is therefore called pseudo-magnetic hereafter. It is important to recognize
that the spin-fluctuation mechanism as well as the significant role of the quantum spin
fluctuations underlie the above assumption, which is also supported by experiments. The
spin-fluctuation spectrum, observed by means of NMR relaxation measurements (Yoshimura
et al 1988b) on the itinerant metamagnetic system Y(Co1−xAl x)2, for instance, shows sudden
changes as the critical Al concentration for the appearance of ferromagnetism is crossed.

At low temperature, the above free energies are expanded in terms of the temperature
T and the uniform magnetizationM as follows:

F1(M, T ) = F1(0, 0)+ 1

2χ1
M2− 1

2
γ1T

2+ · · ·

F2(M, T ) = F2(0, 0)+ 1

2χ2
M2− 1

2
γ2T

2+ · · ·
(3)

where the γ s stand for the linear coefficients of the electronic specific heat, with
enhancement due to the effect of spin fluctuations. In order for the metamagnetic transition
to take place, the above two thermodynamic states have to be almost degenerate, or, to be
precise, the free energyF1(0, 0) has to be slightly lower thanF2(0, 0):

1F(0, 0) = F2(0, 0)− F1(0, 0) > 0.

The first-order metamagnetic transition takes place from one of the paramagnetic states
to a pseudo-magnetic state in the presence of the external magnetic field, if both of the
conditions

γ2 > γ1 χ2 > χ1 (4)

are satisfied. It is therefore important to check the validity of the above conditions in actual
cases.

In the case of the Y(Co1−xAl x)2 system, the specific heat measurements (Wadaet al
1989, 1990) suggest that the first conditionγ2 > γ1 is satisfied. The coefficientsγ for
the ferromagnetic samples show larger values than those for the paramagnetic samples. It
is reasonable to associate theγ -values of our pseudo-magnetic states with those of the
ferromagnetic samples. The inequality of theγ -values is also consistent with our natural
view that the entropy in the magnetic or pseudo-magnetic state grows faster than that in
the non-magnetic state. The second condition is also satisfied in general. According to
our earlier discussion (Takahashi and Sakai 1995), the value ofχ1 can be estimated as the
observed value of the magnetic susceptibility atT = 0 K, because the system will be in the
paramagnetic state in the ground state. On the other hand, the temperature dependence of the
susceptibility at higher temperature mainly reflects the free energy of the pseudo-magnetic
state. The value ofχ2 is estimated by smooth extrapolation of the susceptibility values at
high temperature above the susceptibility maximum to theT = 0 limit. The presence of
the susceptibility maximum therefore automatically ensures the inequalityχ2 > χ1.

Let us now discuss the simple energetics by comparing the free energies of81(H, T )

and82(H, T ) in the presence of the external fieldH , defined by

81(H, T ) = F1(M, T )−HM 82(H, T ) = F2(M, T )−HM. (5)
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We first introduce the metamagnetic transition temperatureTm and the transition field
Hm, which characterize the energetic crossover between the paramagnetic and pseudo-
magnetic states. After minimization of81(H, T ) and82(H, T ) with respect toM, the
free-energy minima in the presence of the magnetic fieldH are, respectively, given by

81(H, T ) = F1(0, 0)− 1

2
χ1H

2− 1

2
γ1T

2+ · · ·

82(H, T ) = F2(0, 0)− 1

2
χ2H

2− 1

2
γ2T

2+ · · · .
(6)

From the condition that the free energies coincide with each other at the metamagnetic
transition field in the ground state,Hm is defined by

H 2
m =

21F(0, 0)

1χ
(1χ = χ2− χ1). (7)

On the other hand, in the absence of the external field we defineTm on the basis of the
same condition by

T 2
m =

21F(0, 0)

1γ
(1γ = γ2− γ1). (8)

From (7) and (8), the following relation betweenTm andHm is derived:

Hm = (1γ/1χ)1/2Tm. (9)

The physical meaning of the parametersHm and Tm introduced above is clarified by
the following discussion. First, the condition81(Hm, 0) = 82(Hm, 0) is equivalent to the
Maxwell rule for the first-order transition employed by Takahashi and Sakai (1995), i.e. at
H = Hm the tangents to the free energiesF1(M, T ) atM = M1 andF2(M, T ) atM = M2

coincide with each other:
∂F1(M1, 0)

∂M
= ∂F2(M2, 0)

∂M
= Hm

F2(M2, 0)− F1(M1, 0)

M2−M1
= 1F(0, 0)+M2

2/2χ2−M2
1/2χ1

M2−M1
= Hm.

(10)

ThereforeHm is simply the metamagnetic transition field. It is also easy to see that at around
the temperatureTm the susceptibility shows a maximum in its temperature dependence. Let
us imagine an idealized situation in which, although the sample is very clean, because of
some slight relaxation processes it always relaxes to its lowest energy state as soon as
possible. Then the temperature dependence of the magnetic susceptibility of the sample
χ(T ) is given by

χ(T ) =
{
χ1(T ) for T < Tm

χ2(T ) for T > Tm
(11)

where χ1(T ) and χ2(T ) are the magnetic susceptibilities for the paramagnetic and the
pseudo-magnetic states, respectively. Because the susceptibility of the pseudo-magnetic
state is greater in magnitude, the magnetic susceptibility shows a steep rise at the temperature
Tm. In actual experimental situations, the transition will occur gradually for various reasons,
and the sudden increase of the susceptibility will be broadened to show a maximum at around
Tm. This is why we associateTm with the temperature of the susceptibility maximum. The
observed linear relation betweenHm andTm is thus derived as the natural consequence of
our equation (9).

The above simple explanation based on the energetic comparison is also consistent with
the external field dependence of the magnetic susceptibility reported for TiBe2 (Monodet al
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1980). Though the magnetic susceptibility shows a maximum at low temperature in the
presence of the weak field, it only decreases monotonically with temperature, showing no
maximum structure for the field strengthH > Hm. The reason for this is that, for such field
strengths, the pseudo-magnetic state is always more stable than the paramagnetic one.

Before concluding this section, we briefly deal with the temperature dependence of
the metamagnetic transition fieldHm at low temperature. At finite temperature, by simply
extending the above discussions, equation (7) is simply replaced by the following form:

H 2
m =

21F(0, T )

1χ(T )
' 21F(0, 0)−1γ T 2+ · · ·

1χ(0)−1AT 2+ · · · (12)

where we assume that the temperature dependence of the magnetic susceptibility difference
1χ is proportional toT 2 at low temperature. By expanding the above expression, equation
(12), in terms ofT 2, we obtain

H 2
m =

1

1χ(0)

(
21F(0, 0)−1γ T 2+ 21F(0, 0)

1χ(0)
1AT 2

)
+ · · ·

= H 2
m0

[
1+

(
H 2
m01A

1γ
− 1

)(
T

Tm

)2
]
+ · · · (13)

whereH 2
m0 stands for the metamagnetic transition field in the ground state given by (7).

The temperature dependence ofHm observed for YCo2 can be understood if the condition

H 2
m01A > 1γ (14)

is satisfied. The above result can also be derived with the use of the Clausius–Clapeyron
relation. The condition (10) is expressed in the following form for finite temperature:

F2(M2, T )− F1(M1, T ) = Hm1M 1M = M2−M1. (15)

By differentiating both sides of the above equation with respect toT under constant mag-
netizationsM2 andM1, we obtain the Clausius–Clapeyron relation

−1S(T ) = dHm
dT

1M (16)

where1S(T ) is the entropy difference, given by

1S(T ) = −
(
∂F2(M2, T )

∂T
− ∂F1(M1, T )

∂T

)
= 1γ T + M2

2

2χ2
2(T )

dχ2(T )

dT
− M2

1

2χ2
1(T )

dχ1(T )

dT

= 1γ T + H
2
m

2

d1χ(T )

dT
= −(H 2

m 1A−1γ )T = 1γeff T . (17)

In deriving the last line of (17) from the second, we use the following relation valid at the
metamagnetic transition:

M2/χ2 = M1/χ1 = Hm.
With the use of (16) and (17) we finally obtain

dHm
dT
= T

1M
(H 2

m 1A−1γ ) =
T

1χ Hm
(H 2

m 1A−1γ ).
If we neglect the difference betweenHm0 andHm at low temperature, the observed positive
dHm/dT is also found to be consistent with the condition (14). The above result also
indicates that we have to be careful when drawing any conclusions as regards the sign of
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1γ from the field dependence of the electronic linear specific coefficient. The observed
negative1γeff (Goto et al 1994) is consistent with the positive deviation ofHm at finite
temperature. This, however, does not necessarily contradict our assumption of a positive
value of1γ , since the observedT -linear specific heat coefficient consists of the sum of
two contributions.

3. Comparison with experiments

The purpose of this section is to check the validity of our idea by comparing the theoretical
consequences with actual observations and by estimating the parameters appearing in the
theory, to see whether these have reasonable values. Before going into detail, let us first
discuss the temperature dependence of the magnetic susceptibility in real experimental
situations. It is in general quite difficult to imagine perfect-crystals samples. Even in
very carefully prepared single crystals, there are usually various subtle inhomogeneities,
such as defects and local strains. All of these will become sources of the distribution of
the value of1F(0, 0) throughout the whole of the samples. Only the value averaged over
these distributions is meaningful and this is what is measured experimentally.

In the following, we assume that the values of1F(0, 0) will distribute around a mean
value1F̄ (0, 0), i.e. 1F(0, 0) = 1F̄ (0, 0) + u. The statistical variableu stands for the
deviation from the mean value. The free-energy difference1F(0, T ) is then regarded as a
statistical variable, i.e.

1F(0, T ) = 1F̄ + u− 1

2
1γ T 2+ · · ·

= u− 1

2
1γ (T 2− T 2

m)+ · · ·
' u−1γ Tm(T − Tm) (18)

where, with the use of the average value of1F̄ , we redefinedTm via

T 2
m = 21F̄/1γ. (19)

According to (11), we obtain the following condition determining whether the system
in the statistical ensemble is either in the pseudo-magnetic or the paramagnetic state:

u > 1γ Tm(T − Tm) for paramagnetic states

u < 1γ Tm(T − Tm) for pseudo-magnetic states.
(20)

If we introduce a distribution functionD(u) for the deviationu, the probabilitiesp1(T )

andp2(T ) for finding the system either in the paramagnetic state or in the pseudo-magnetic
state at given temperatureT are, respectively, given by

p1(T ) =
∫ ∞
1γ Tm(T−Tm)

D(u) du p2(T ) =
∫ 1γ Tm(T−Tm)

−∞
D(u) du. (21)

The observed magnetic susceptibility, averaged over the ensemble of the samples, is given
by

χ(T ) = p1(T )χ1(T )+ p2(T )χ2(T ) (22)

whereχ1(T ) andχ2(T ) represent the susceptibilities for the paramagnetic and the pseudo-
magnetic states, respectively.

At low temperature, belowTm, χ(T ) is mainly given byχ1(T ). As we increase the
temperature it gradually changes until it is given byχ2(T ) at aroundTm. In order to see
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T/Tm
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Figure 1. The temperature dependence of the magnetic susceptibility evaluated with the use of
equation (24) forδ/1γ T 2

m = 0.4 andAT 2
m/χ2(0) = 0.05.

whether the observed behaviour of the magnetic susceptibility is reproduced by (22), we
numerically calculated the temperature dependence ofχ(T ) with the use of the Lorentzian
form of the distribution function forD(u), given by

D(u) = 1

π

δ

u2+ δ2

whereδ represents a measure of the standard deviation ofD(u). The probabilities in (21)
are in this case given by

p1(T ) = 1

2
− 1

π
tan−1

(
1γ Tm(T − Tm)

δ

)
p2(T ) = 1− p1(T ) = 1

2
+ 1

π
tan−1

(
1γ Tm(T − Tm)

δ

)
.

(23)

For illustration, we show in figure 1 the temperature dependence ofχ(T ) evaluated by using
(22). In this calculation we have simply assumed the following temperature dependences
of χ1(T ) andχ2(T ):

χ1(T ) = χ1− A1T
2 χ2(T ) = χ2− A2T

2 (24)

which is justified at low temperature. We have also assumed that1A = 0 for simplicity.
It is easy to see that the temperature scale for the transition from the paramagnetic to the
pseudo-magnetic state is given byδ/1γ Tm.

The positiveT 2-dependence of the transition fieldHm, observed for YCo2 for instance,
suggests a positive value of1A when1γ is positive. Then1χ(T ) would appear to vanish
at some temperature if (24) holds over the wide temperature range, because the following
relation holds for1χ(T ):

1χ(T ) = 1χ −1AT 2 = T 2
m(1γ/H

2
m −1A)+1A(T 2

m − T 2). (25)

In the preceding section we saw that the first term is negative for YCo2 from the condition
(14), indicating that1χ(T ) changes sign at some temperatureT below Tm. If this was
the case, it would contradict our scenario for the susceptibility maximum as mentioned
above. We think, however, that this will not happen and that1χ(T ) always remains
positive, because the magnetic susceptibilities soon obey a Curie–Weiss-like temperature
dependence with nearly the same Curie constants on increasing temperature. Note that the



5380 Y Takahashi and T Sakai

T 2-dependence with a positive coefficient is only observed for YCo2 at low temperature,
far belowTm.

For the purpose of making comparisons between the theory and experiments, the
intermetallic compound Y(Co1−xAl x)2 is the best system to consider. A lot of experimental
studies have been done on this system, using various experimental techniques. With the use
of (7) and (8) we can estimate the free-energy difference1F from the observed values of
1χ andHm, or 1γ andTm. We give in table 1 values of1F and1γ obtained from (9)
by using the experimentally estimated values of1χ andHm. We see that the free-energy
difference decreases monotonically on increasing the Al concentration towards the critical
concentration for the appearance of the weak ferromagnetism, while1χ and1γ remain
almost constant.

Table 1. The metamagnetic behaviour and the susceptibility maximum of Y(Co1−xAlx )2, after
Sakakibaraet al (1990).

x 1χ (10−3 emu mol−1) Hm (T) 1F (K) Tm (K) 1γ (mJ mol−1 K−2)

0.00 1.2 69 3.3 240 1.0
0.02 1.3 62 3.0 220 1.0
0.04 1.2 51 1.9 180 1.1
0.06 1.0 39 0.94 140 0.8
0.07 0.83 32 0.53 110 0.7
0.09 0.56 22 0.16 60 0.7
0.11 1.2 17 0.21 35 2.9

Though there are no direct measurements of values of1γ available at present, we can
get rough estimates of these values from the Al concentration dependence of the observed
γ -values (Wadaet al 1989, 1990). From theγ -value reported for the ferromagnetic sample
with the highestTc, we estimate1γ ' 10 mJ K−2 mol−1, which will serve as an upper
bound for the actual values. The values of1γ of several mJ mol−1 K−2 listed in table 1
are comparable with this value. The analysis suggests that our equation (9) agrees well with
experiments, including this factor, considering our crude estimates of the values of1χ and
1γ .

With the use of the value of1γ estimated above, we can also get a rough picture of
the temperature width of the susceptibility maximum, given byδ/1γ Tm. If we assume
that δ ' 0.5 K per magnetic ion, this gives about 10 K for the width of the magnetic
susceptibility peak forx = 0.11, consistent with experiments. It is quite reasonable to
assume that the free-energy difference is as small as this for the samples. This also suggests
that we are dealing with realistic situations.

4. Discussion

In the present paper, we have proposed a mechanism for the occurrence of the
susceptibility maximum observed universally, associated with itinerant-electron meta-
magnetism. According to our picture, its origin is closely related to the first-order phase
transition. It is nothing to do with the fine structure of the density-of-states curve around the
Fermi energy, though that may be responsible for the occurrence of the double-minimum
structure for the classical Hartree–Fock contribution to the free energy. In our view, both
the temperature dependence of the magnetic susceptibility and the magnetization process
have to be derived as effects of the spin fluctuations.
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On the basis of the spin-fluctuation mechanism, however, we can only predict a quite
normal temperature dependence of the magnetic susceptibilityχ , i.e. a monotonic decrease
with temperature proportional toT 2 at low temperature. No peak structure in its temperature
dependence occurs in general. The free energy is also expanded very well up to the fourth-
order term inM. No higher-order terms need to appear. A possible way to produce
the observed temperature dependence ofχ that is consistent with the above restrictions
is to assume the existence of almost degenerate nearly ferromagnetic states, the existence
of which is explained by our spin-fluctuation mechanism. The transition between these
states triggered by the thermal activations or by applying an external magnetic field gives
rise to the metamagnetic transition. Note, however, that the linearity of the Arrott plot of
the magnetization process before and after the transition is a natural consequence of our
mechanism. Otherwise, we would need unrealistic higher-order expansion terms in order
to reproduce the behaviour.

According to our mechanism, the susceptibility maximum appears as an extrinsic effect
associated with the first-order transition. For MnSi it has recently be shown from NMR
measurements (Thessieuet al 1998) that the magnetic and the paramagnetic states coexist
around the critical region in which the magnetism disappears under pressure. For CoS2

with the pyrite crystal structure, it was also reported from NMR measurements that the local
environmental effect around magnetic ions is important and that non-magnetic and magnetic
states coexist around the metamagnetic transition. Moreover, recent pressure dependence
measurements made on MnSi (Thessieu 1997) show that its fourth-order coefficientb

remains finite and does not seem to vanish as the critical pressure at which the magnetism
disappears is approached. It would be very difficult to interpret this behaviour on the basis
of a the model free energy of the form (1) and assuming a negative value ofb. These
experimental observations are, on the other hand, quite consistent with our idea.

With the use of the Maxwell relation for the thermodynamics, we can show that the
magnetic field dependence of the specific heat is related to the curvature of the temperature
dependence of the magnetic susceptibility. The appearance of the susceptibility maximum
has been analysed in terms of the relation associated with the field dependence of the
electronic specific heat measurements (Béal-Monod 1981, Shiodaet al 1988). Our present
arguments, however, indicate that we have to be very careful when applying the relation
to the itinerant-electron metamagnetic systems. If the susceptibility maximum at low
temperature is not intrinsic but is derived from extrinsic effects, as suggested here, such a
relation need not hold. In checking our picture, it is of interest to see whether or not the
Maxwell relation holds at low temperature and in the weak-field region. The dependence of
the sample preparation on the temperature width of the susceptibility may also be valuable.
Magnetization measurements at still higher magnetic fields after the metamagnetic transition
has taken place, to check the linearity of the Arrott plot, are, of course, crucial for testing
our mechanism.

In the present treatment, we have assumed that the free energy is well represented by
the expansion up to the second-order terms inM in order to clarify the central point of
our treatment in a simple manner. Thus its use will be very suitable for cases in which the
magnetization always remains very small in magnitude. In some cases, MnSi under pressure
(Thessieuet al 1995) and CoS2 with Se substitution (Adachiet al 1979) for instance, a
sizable moment is induced during the transition. In such cases, slight modifications may be
needed, such as taking into account the effects of the higher-orderM4-term as was done by
Takahashi and Sakai (1995).

Note also that the reason that we feel that we can employ the term ‘pseudo-magnetic
state’ lies in the following observation. The higher-magnetic-field side of the Arrott plot of



5382 Y Takahashi and T Sakai

the magnetization process for Y(Co1−xAl x)2 extrapolates linearly to a finiteM2-value in the
H/M = 0 limit (Takahashi and Sakai 1995), suggesting the presence of a magnetic state
after the metamagnetic transition. This is why we associated one of the degenerate states
with a magneticstate in our previous treatment. The present paper thus takes the opposite
view, and regards both of the states asparamagnetic, with the reservation that one of them
is very close to being amagneticstate. Whichever is closer to reality, our central point of
the assumption of the coexistence of degenerate thermodynamic states remains unchanged.
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